Skip to content

BotSort

Bases: BaseTracker

BoTSORT Tracker: A tracking algorithm that combines appearance and motion-based tracking.

Parameters:

Name Type Description Default
reid_weights str

Path to the model weights for ReID.

required
device device

Device to run the model on (e.g., 'cpu' or 'cuda').

required
half bool

Use half-precision (fp16) for faster inference.

required
per_class bool

Whether to perform per-class tracking.

False
track_high_thresh float

Detection confidence threshold for first association.

0.5
track_low_thresh float

Detection confidence threshold for ignoring detections.

0.1
new_track_thresh float

Threshold for creating a new track.

0.6
track_buffer int

Frames to keep a track alive after last detection.

30
match_thresh float

Matching threshold for data association.

0.8
proximity_thresh float

IoU threshold for first-round association.

0.5
appearance_thresh float

Appearance embedding distance threshold for ReID.

0.25
cmc_method str

Method for correcting camera motion, e.g., "sof" (simple optical flow).

'ecc'
frame_rate int

Video frame rate, used to scale the track buffer.

30
fuse_first_associate bool

Fuse appearance and motion in the first association step.

False
with_reid bool

Use ReID features for association.

True
Source code in boxmot/trackers/botsort/botsort.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
class BotSort(BaseTracker):
    """
    BoTSORT Tracker: A tracking algorithm that combines appearance and motion-based tracking.

    Args:
        reid_weights (str): Path to the model weights for ReID.
        device (torch.device): Device to run the model on (e.g., 'cpu' or 'cuda').
        half (bool): Use half-precision (fp16) for faster inference.
        per_class (bool, optional): Whether to perform per-class tracking.
        track_high_thresh (float, optional): Detection confidence threshold for first association.
        track_low_thresh (float, optional): Detection confidence threshold for ignoring detections.
        new_track_thresh (float, optional): Threshold for creating a new track.
        track_buffer (int, optional): Frames to keep a track alive after last detection.
        match_thresh (float, optional): Matching threshold for data association.
        proximity_thresh (float, optional): IoU threshold for first-round association.
        appearance_thresh (float, optional): Appearance embedding distance threshold for ReID.
        cmc_method (str, optional): Method for correcting camera motion, e.g., "sof" (simple optical flow).
        frame_rate (int, optional): Video frame rate, used to scale the track buffer.
        fuse_first_associate (bool, optional): Fuse appearance and motion in the first association step.
        with_reid (bool, optional): Use ReID features for association.
    """

    def __init__(
        self,
        reid_weights: Path,
        device: torch.device,
        half: bool,
        per_class: bool = False,
        track_high_thresh: float = 0.5,
        track_low_thresh: float = 0.1,
        new_track_thresh: float = 0.6,
        track_buffer: int = 30,
        match_thresh: float = 0.8,
        proximity_thresh: float = 0.5,
        appearance_thresh: float = 0.25,
        cmc_method: str = "ecc",
        frame_rate=30,
        fuse_first_associate: bool = False,
        with_reid: bool = True,
    ):
        super().__init__(per_class=per_class)
        self.lost_stracks = []  # type: list[STrack]
        self.removed_stracks = []  # type: list[STrack]
        BaseTrack.clear_count()

        self.per_class = per_class
        self.track_high_thresh = track_high_thresh
        self.track_low_thresh = track_low_thresh
        self.new_track_thresh = new_track_thresh
        self.match_thresh = match_thresh

        self.buffer_size = int(frame_rate / 30.0 * track_buffer)
        self.max_time_lost = self.buffer_size
        self.kalman_filter = KalmanFilterXYWH()

        # ReID module
        self.proximity_thresh = proximity_thresh
        self.appearance_thresh = appearance_thresh
        self.with_reid = with_reid
        if self.with_reid:
            self.model = ReidAutoBackend(
                weights=reid_weights, device=device, half=half
            ).model

        self.cmc = get_cmc_method(cmc_method)()
        self.fuse_first_associate = fuse_first_associate

    @BaseTracker.setup_decorator
    @BaseTracker.per_class_decorator
    def update(
        self, dets: np.ndarray, img: np.ndarray, embs: np.ndarray = None
    ) -> np.ndarray:
        self.check_inputs(dets, img, embs)
        self.frame_count += 1

        activated_stracks, refind_stracks, lost_stracks, removed_stracks = [], [], [], []

        # Preprocess detections
        dets, dets_first, embs_first, dets_second = self._split_detections(dets, embs)

        # Extract appearance features
        if self.with_reid and embs is None:
            features_high = self.model.get_features(dets_first[:, 0:4], img)
        else:
            features_high = embs_first if embs_first is not None else []

        # Create detections
        detections = self._create_detections(dets_first, features_high)

        # Separate unconfirmed and active tracks
        unconfirmed, active_tracks = self._separate_tracks()

        strack_pool = joint_stracks(active_tracks, self.lost_stracks)

        # First association
        matches_first, u_track_first, u_detection_first = self._first_association(
            dets,
            dets_first,
            active_tracks,
            unconfirmed,
            img,
            detections,
            activated_stracks,
            refind_stracks,
            strack_pool,
        )

        # Second association
        matches_second, u_track_second, u_detection_second = self._second_association(
            dets_second,
            activated_stracks,
            lost_stracks,
            refind_stracks,
            u_track_first,
            strack_pool,
        )

        # Handle unconfirmed tracks
        matches_unc, u_track_unc, u_detection_unc = self._handle_unconfirmed_tracks(
            u_detection_first,
            detections,
            activated_stracks,
            removed_stracks,
            unconfirmed,
        )

        # Initialize new tracks
        self._initialize_new_tracks(
            u_detection_unc,
            activated_stracks,
            [detections[i] for i in u_detection_first],
        )

        # Update lost and removed tracks
        self._update_track_states(lost_stracks, removed_stracks)

        # Merge and prepare output
        return self._prepare_output(
            activated_stracks, refind_stracks, lost_stracks, removed_stracks
        )

    def _split_detections(self, dets, embs):
        dets = np.hstack([dets, np.arange(len(dets)).reshape(-1, 1)])
        confs = dets[:, 4]
        second_mask = np.logical_and(
            confs > self.track_low_thresh, confs < self.track_high_thresh
        )
        dets_second = dets[second_mask]
        first_mask = confs > self.track_high_thresh
        dets_first = dets[first_mask]
        embs_first = embs[first_mask] if embs is not None else None
        return dets, dets_first, embs_first, dets_second

    def _create_detections(self, dets_first, features_high):
        if len(dets_first) > 0:
            if self.with_reid:
                detections = [
                    STrack(det, f, max_obs=self.max_obs)
                    for (det, f) in zip(dets_first, features_high)
                ]
            else:
                detections = [STrack(det, max_obs=self.max_obs) for det in dets_first]
        else:
            detections = []
        return detections

    def _separate_tracks(self):
        unconfirmed, active_tracks = [], []
        for track in self.active_tracks:
            if not track.is_activated:
                unconfirmed.append(track)
            else:
                active_tracks.append(track)
        return unconfirmed, active_tracks

    def _first_association(
        self,
        dets,
        dets_first,
        active_tracks,
        unconfirmed,
        img,
        detections,
        activated_stracks,
        refind_stracks,
        strack_pool,
    ):

        STrack.multi_predict(strack_pool)

        # Fix camera motion
        warp = self.cmc.apply(img, dets)
        STrack.multi_gmc(strack_pool, warp)
        STrack.multi_gmc(unconfirmed, warp)

        # Associate with high confidence detection boxes
        ious_dists = iou_distance(strack_pool, detections)
        ious_dists_mask = ious_dists > self.proximity_thresh
        if self.fuse_first_associate:
            ious_dists = fuse_score(ious_dists, detections)

        if self.with_reid:
            emb_dists = embedding_distance(strack_pool, detections) / 2.0
            emb_dists[emb_dists > self.appearance_thresh] = 1.0
            emb_dists[ious_dists_mask] = 1.0
            dists = np.minimum(ious_dists, emb_dists)
        else:
            dists = ious_dists

        matches, u_track, u_detection = linear_assignment(
            dists, thresh=self.match_thresh
        )

        for itracked, idet in matches:
            track = strack_pool[itracked]
            det = detections[idet]
            if track.state == TrackState.Tracked:
                track.update(detections[idet], self.frame_count)
                activated_stracks.append(track)
            else:
                track.re_activate(det, self.frame_count, new_id=False)
                refind_stracks.append(track)

        return matches, u_track, u_detection

    def _second_association(
        self,
        dets_second,
        activated_stracks,
        lost_stracks,
        refind_stracks,
        u_track_first,
        strack_pool,
    ):
        if len(dets_second) > 0:
            detections_second = [
                STrack(det, max_obs=self.max_obs) for det in dets_second
            ]
        else:
            detections_second = []

        r_tracked_stracks = [
            strack_pool[i]
            for i in u_track_first
            if strack_pool[i].state == TrackState.Tracked
        ]

        dists = iou_distance(r_tracked_stracks, detections_second)
        matches, u_track, u_detection = linear_assignment(dists, thresh=0.5)

        for itracked, idet in matches:
            track = r_tracked_stracks[itracked]
            det = detections_second[idet]
            if track.state == TrackState.Tracked:
                track.update(det, self.frame_count)
                activated_stracks.append(track)
            else:
                track.re_activate(det, self.frame_count, new_id=False)
                refind_stracks.append(track)

        for it in u_track:
            track = r_tracked_stracks[it]
            if not track.state == TrackState.Lost:
                track.mark_lost()
                lost_stracks.append(track)

        return matches, u_track, u_detection

    def _handle_unconfirmed_tracks(
        self, u_detection, detections, activated_stracks, removed_stracks, unconfirmed
    ):
        """
        Handle unconfirmed tracks (tracks with only one detection frame).

        Args:
            u_detection: Unconfirmed detection indices.
            detections: Current list of detections.
            activated_stracks: List of newly activated tracks.
            removed_stracks: List of tracks to remove.
        """
        # Only use detections that are unconfirmed (filtered by u_detection)
        detections = [detections[i] for i in u_detection]

        # Calculate IoU distance between unconfirmed tracks and detections
        ious_dists = iou_distance(unconfirmed, detections)

        # Apply IoU mask to filter out distances that exceed proximity threshold
        ious_dists_mask = ious_dists > self.proximity_thresh
        ious_dists = fuse_score(ious_dists, detections)

        # Fuse scores for IoU-based and embedding-based matching (if applicable)
        if self.with_reid:
            emb_dists = embedding_distance(unconfirmed, detections) / 2.0
            emb_dists[emb_dists > self.appearance_thresh] = 1.0
            emb_dists[ious_dists_mask] = (
                1.0  # Apply the IoU mask to embedding distances
            )
            dists = np.minimum(ious_dists, emb_dists)
        else:
            dists = ious_dists

        # Perform data association using linear assignment on the combined distances
        matches, u_unconfirmed, u_detection = linear_assignment(dists, thresh=0.7)

        # Update matched unconfirmed tracks
        for itracked, idet in matches:
            unconfirmed[itracked].update(detections[idet], self.frame_count)
            activated_stracks.append(unconfirmed[itracked])

        # Mark unmatched unconfirmed tracks as removed
        for it in u_unconfirmed:
            track = unconfirmed[it]
            track.mark_removed()
            removed_stracks.append(track)

        return matches, u_unconfirmed, u_detection

    def _initialize_new_tracks(self, u_detections, activated_stracks, detections):
        for inew in u_detections:
            track = detections[inew]
            if track.conf < self.new_track_thresh:
                continue

            track.activate(self.kalman_filter, self.frame_count)
            activated_stracks.append(track)

    def _update_tracks(
        self,
        matches,
        strack_pool,
        detections,
        activated_stracks,
        refind_stracks,
        mark_removed=False,
    ):
        # Update or reactivate matched tracks
        for itracked, idet in matches:
            track = strack_pool[itracked]
            det = detections[idet]
            if track.state == TrackState.Tracked:
                track.update(det, self.frame_count)
                activated_stracks.append(track)
            else:
                track.re_activate(det, self.frame_count, new_id=False)
                refind_stracks.append(track)

        # Mark only unmatched tracks as removed, if mark_removed flag is True
        if mark_removed:
            unmatched_tracks = [
                strack_pool[i]
                for i in range(len(strack_pool))
                if i not in [m[0] for m in matches]
            ]
            for track in unmatched_tracks:
                track.mark_removed()

    def _update_track_states(self, lost_stracks, removed_stracks):
        for track in self.lost_stracks:
            if self.frame_count - track.end_frame > self.max_time_lost:
                track.mark_removed()
                removed_stracks.append(track)

    def _prepare_output(
        self, activated_stracks, refind_stracks, lost_stracks, removed_stracks
    ):
        self.active_tracks = [
            t for t in self.active_tracks if t.state == TrackState.Tracked
        ]
        self.active_tracks = joint_stracks(self.active_tracks, activated_stracks)
        self.active_tracks = joint_stracks(self.active_tracks, refind_stracks)
        self.lost_stracks = sub_stracks(self.lost_stracks, self.active_tracks)
        self.lost_stracks.extend(lost_stracks)
        self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
        self.removed_stracks.extend(removed_stracks)
        self.active_tracks, self.lost_stracks = remove_duplicate_stracks(
            self.active_tracks, self.lost_stracks
        )

        outputs = [
            [*t.xyxy, t.id, t.conf, t.cls, t.det_ind]
            for t in self.active_tracks
            if t.is_activated
        ]

        return np.asarray(outputs)